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channels are simultaneously open. An analogous prob
lem for a different class of endothermic reactions was 
analyzed successfully by Meshkov, Snow, and Yodh,7 

who compared different endothermic reactions at the 
same outgoing kinetic energy. 

In the low-energy region, the rather large S°—A mass 
difference may cause large deviations from the pure SU3 
predictions, for reactions (le) and (If). For example, if 
tensor forces are important8 for an incident ZS\ (Hrp) 
state, the outgoing ZD\ state of iPn will be strongly sup
pressed by centrifugal barrier effects relative to the 
outgoing ZD\ state of An.8 

A particularly interesting comparison may be made 
between the cross sections for the processes n+p —> n+p 
and 2,++p —->2++^. Their ^o cross sections both de
pend only on T27 and should be the same. However, the 
35i cross section for the X+p system depends on Z10, 
whereas the 3Si system for the n+p system corresponds 
to the deuteron (Tio). Since 

crtot(2+2+) = (l/4)<70C£+2+)+ (3/4V (2+2+) (10) 

and 

<r°(/m)==(70(2+2+), (11) 

SU3 invariance predicts that 

crtot(2+2+)> (1/4V(»»). (12) 
7 S. Meshkov, G. A. Snow, and G. B. Yodh, Phys. Rev. Letters 

12, 87 (1964). 
8 D. E. Neville, Phys. Rev. 130, 327 (1963); J. J. deSwart and 

C. K. Iddings, ibid. 130, 319 (1963). 

THE large angle p-p elastic-scattering cross section1 

shows a strong dependence on both energy and 
momentum transfer. Orear2 has pointed out that this 
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stein, D. B. Scarl, W. F. Baker, E. W. Jenkins, and A. L. Read, 
Phys. Rev. Letters 11, 499 (1963); W. F. Baker, E. W. Jenkins, 
A. L. Read, G. Cocconi, V. T. Cocconi, A. D. Krisch, J. Orear, 
R. Rubinstein, D. R. Scarl, and B. T. Ulrich, Phys. Rev. Letters 
12, 132 (1964). 

2 J. Orear, Phys. Rev. Letters 12, 112 (1964). 

The amount by which (rtot(S
+S+) is larger than a0(nn) 

is a direct measure of Ti0. A difficulty with this analysis 
arises if we consider the hyperon-nucleon potential as 
arising from meson exchange. The wide variation of the 
masses of the eight pseudoscalar mesons would imply 
substantial differences in the ranges of parts of the 
hyperon-nucleon potential compared to those of the 
nucleon-nucleon potential.9 This might produce devia
tions from the SU3 prediction given above. 

Despite all of the difficulties cited above, comparison 
of the reactions (1) with Eqs. (2)-(9) should prove use
ful because it may provide important clues about the 
effect of SU3 symmetry breaking on baryon-baryon 
dynamics. The S-wave cross sections for the reactions 
Eqs. (la)-(lg) are all observable, since K~ mesons 
stopping in a hydrogen bubble chamber provide an 
excellent source of low-energy 2+, S~, and A hyperons. 
The interactions of these hyperons with protons can be 
studied in the same pictures which record their 
production.10 

Note added in proof. Preliminary experimental results 
of R. Burnstein et al.10 yield o-tot(S

+,S+) = 200zhl00 mb 
at a 2+ average laboratory momentum of 160 MeV/c. 
The assumption of SU3 invariance combined with p-p 
scattering data predicts io-0(2+,2+) = 165 mb at this 
momentum, indicating that o-1(2+,2+) is small. 

9 A similar comment has been made by R. H. Dalitz, Proceedings 
of the Athens Topical Conference, 1963 (unpublished). 

10 R. Burnstein, T. B. Day, B. Kehoe, B. Sechi-Zorn, and G. A. 
Snow, Bull. Am. Phys. Soc. 8, 515 (1963); and (to be published). 

strong dependence can be fitted by a single exponential 
in the transverse momentum. If this dependence holds 
to arbitrarily high energies, the scattering amplitude 
for a fixed angle must decrease for increasing energy as 
exp(—const s1/2), where s is the square of the center-of-
mass energy. At any rate it appears that the scattering 
amplitude for finite fixed angle is a rapidly decreasing 
function of s. 

The purpose of this note is to show that this rapid 
decrease of the scattering amplitude at finite angles 
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It is shown that if the analytically continued partial-wave amplitude is assumed to have I dependence 

a±(s,l)=£ Cm±(s)lm(l+Vm 

for Kl0(s) and finite n, the scattering amplitude is bounded by exp{ — const[lo(s) sin0(s)]*} at high energies. 
Here a+(s,l)[a-(s,l)2 is equal to ai(s) for even (odd) integer I. The most physical example of this dependence 
is that in which a central area of the scatterer becomes maximally absorptive. 
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can be understood as a direct consequence of maximal 
inelasticity of the partial waves whose angular momenta 
are smaller than a bound k(s) which increases with s. 
We mean by maximal inelasticity that 

*i(s) = LviU) exp2idi(s)- \~]/{2t)^i/2 

as s —» oo because r)i(s) —> 0. This is the physically most 
meaningful interpretation of our result. However, the 
same effect upon finite angle scattering will be obtained 
if all ai(s) go to any allowable fixed limit for Kl0(s). 

More detailed treatment show that even when l0(s) 
is relatively small it is impossible for ai(s) to go to this 
limit in an I independent way. The diffraction behavior 
of the full amplitude requires deviation from ai(s) = i/2 
which cannot be a too rapidly decreasing function of s. 
We shall take this / dependence into account by expand
ing ai(s) into a power series of /. Since ai(s) is given only 
for positive integer values of /, we must discuss how to 
continue ai(s) into the full complex plane in order to 
expand it into a power series. One method is the one 
used in connection with the Regge formalism. For our 
purpose, however, we continue ai(s) into the complex 
plane by using the definition 

a±(s,l) = / d(cos$)£T(s, cos0) 

±T(s, -cos0)]Pz(cos0). (1) 

According to this definition a+(s,l) equals ai(s) for even I 
and a-(s,l) equals ai(s) for odd I. Our reason for defining 
ai(s) in complex / in this way is that a±(s,l) defined by 
Eq. (1) has no singularity except at 1= <*>. Consequently, 
for the approximation with finite powers of /, the defini
tion (1) is better than any other definition on which 
ai(s) might have some singularities at finite /. Because 
of the symmetry of P*(cos0) about / = — i , a±(sj) has 
only even power of (2Z+1). Therefore we have 

a±(s,l)^i:CmHs)lm(l+l)™ when l<h(s), (2) 

where, since lo(s) will be assumed to increase with s, 
Cn^is) for m^O must go to zero as a function of s 
sufficiently rapidly to guarantee convergence of the sum. 

Our results are the following: If a±(s,l) is given by 
Eq. (2) for finite n and the difference between the two 
sides of Eq. (2) is a sufficiently rapidly decreasing 
function of s, then the scattering amplitude T(s, cos0) 
for a finite angle is bounded by 

| T(s, cos0) | <exp{-constpoC?)]1 /2} . (3) 

The inequality (3) can be extended to small angles 
depending upon s, as 

| T[s, cos6>0)] | <exp{ - c o n s t p o 0 ) sinflfr)]1'2} . (4) 

The impact parameter corresponding to l—h(s) is 
k(s)/s1/2. When l0(s) increases more slowly than s1/2, 
the scattering in the partial waves is therefore due to a 

decreasing area of the scatterer. Our result is then: that 
if the particles are homogeneous over such a small range 
of impact parameters, T(s, cos0) must decrease rapidly 
as a function of s. In this note we shall only discuss the 
inequality (4), since the inequality (3) is a special case 
of this inequality. In (4) [/o(s) sin0(s)]1/2 might, by 
improved arguments, be replaced by l0(s) sin0(Y), as 
we shall discuss later. 

In order to prove (4), we use the results of a previous 
paper.3 In Paper I we have divided T[s, cos0(s)[] into 
upper and lower sums : 

Tu£s, cos#C?)] 

= E ( 2 / + l ) a z U ) [ l - / i W ] ^ [ c o s ^ W ] (5) 
z=o 

and 

TLZs, cos$(s)2=f:(2l+l)ai(s)fi(s)Plcose(s)2 (6) 

z=o 

using the "step function" 

/,(*) = { l - e x p [ - a l n V ( H - l ) sin0(s)]}0 In* (7) 
and have proved that : if T(s, cos0) is analytic in a 
particular region as a function of cos0 and T(s, cos0) is 
bounded by a power of s at the boundary of the analy-
ticity region, then, if we take a sufficiently large, 

\Tu\j,cose(s)l\<srN, (8) 

where N is an arbitrary positive number. I t should be 
noted that, by Eq. (7) 

i W z M I O - * for K{N/a) lns/smd(s) (9) 

and 
\fi(s)\<s~N for l>aoln2s/smd(s), (10) 

where ao= — a / l n [ l — exp(—N/(3)~]. The analyticity 
assumed in I to prove the inequality (8) is that T(s, cos0) 
is analytic as a function of cos0 in an s independent 
complex neighborhood of the real segment (—1, 1) 
except for its intersection with the cuts from oo to 
x(s) and — x(s) to — oo ? x(s) being an arbitrary function 
of s with x(s)>l. 

Although it was not remarked in I, the results there 
are independent of the interpretation of s as the square 
of the center-of-mass energy provided that s is larger 
than the center-of-mass energy. If we replace the factor 
aoln2Vsin(s) m Eqs. (5), (6), and (7) by lo(s) and call 
the new step functionFi(s), then the result corresponding 
to the inequality (8) becomes 

| Tu[s, cos0<»] | <exp-tf 0 [ /o(*) smB(s)Ji* (11) 

with No=N/ao112. The inequalities corresponding to (9) 
and (10) are 

11-Fi(s) | <exp{-N£h(s) siD0(s)Ji*} (12) 

3 K. Yamamoto, Phys. Rev. 134, B682 (1964), hereafter referred 
to as I. 
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for 
l<(No/a)[_k(s)/smd(s)Jf2 

and 
| Fi(s) | <exp-2V0[/oCO smd(s)Ji* (13) 

for 
l>h(s). 

For the proof of the main inequality (4), it is necessary 
to obtain a bound for TL[_S, COS0(S)] corresponding to 
that in the inequality (11) for Tu\j, cos0(s)]. If a±(s,l) 
converges sufficiently rapidly to the form given by 
Eq. (2) for l<l0(s), from the inequality (13) it is 
obvious that the difference between TL[S, COS#(S)] and 

7V[>, cos0($)]= E{Cw+(*)^+[>, cos0(*)] 
m=0 

+Cm-(s)tm-ls, cos0(s)]} (14) 

is of the order of exp{ — const[_k(s) sin0(.?)]1/2}, where 

/m
+[s, cos0(s)] 

= E(4/+l)(20m (2/+l)" / ; ,2i(s)P«[cosf l ( j ) ] (15) 

and 

tm-ls, cosd(s)2= E ( 4 / + 3 ) ( 2 / + 1 ) « ( 2 / + 2 ) * F 2 M - I U ) 
1=0 

XP2i+£cosd(s)1. (16) 

In the right-hand side of Eq. (14) we discuss only 
to+[s, cos0(s)], since the same discussion holds for 
tm

+[_s, cos0(s)] with w ^ O and for tnT^s, cos0(s)]. To 
estimate to+[_s, cos0(s)], we consider the following 
relation: 

00 

i ; ( 4 / + l ) ^ ^ 2 z ( c o s 0 ) = [ ( l - 2 ^ c o s 0 + ^ ) - 3 / 2 

1=0 

+ ( l+2Acos0+A 2 ) - 3 / 2 ] ( l - ^ 2 ) /2 , (17) 

which can be proved by using the generating func
tion of the Legendre polynomials. If in Eq. (17) 
h=l — exp{ — constpo(s) sin0(^)]1/2}, then the right-
hand side of Eq. (17) satisfies all the analyticity and 
bounded properties assumed for the amplitude dis
cussed in I. Therefore, as was shown there, we have the 
upper sum in Eq. (17) 

| E ( 4 / + l ) ^ [ l - F 2 z ( . ) ] P 2 £ c o s 0 W ] | 
1=0 

< e x p { - c o n s t p o W sin0Cy)]1/2}. (18) 

Because of the form assumed for h the total sum 
on the right-hand side of Eq. (17) is of the order of 
exp{ — constpo(s) sin0(s)]1/2}, then the lower sum 

t(y+l)h2lF2l(s)P2lcosO(sn\ 
1=0 

<exp{-const[/oC?) sinflfr)]1'2}. (19) 

This discussion is sufficient to prove the inequality 
(4) because the difference between 

/o+[>, cos0(s)] and t,(41+l)tflF2i(s)PitcQse(s)] 
1=0 

is again of the order of exp{ — const[lo(s) sin0(s)]1/2} 
and exactly the same discussion follows for 

tn^lj, cos0(s)]. 

Although an ansatz of the form in Eq. (2) is sufficient 
to obtain our result, we can see that for k(s) increasing 
with s, Cn^is) must go to zero at least lo~2m(s) to guaran
tee the convergence of Eq. (2). This means that any 
partial wave goes to the limit Co+(s) or CQ~(S). I t seems 
reasonable, in view of the increasing number of inelastic 
channels opening at high energies, that Co+(s) and/or 
CQ~(S) goes to i/2 as s —> oo corresponding to maximal 
inelasticity of the partial wave scattering in the high-
energy limit. 

I t may be possible to replace ln2s in the inequality 
(10) by Ins.4 If such an improvement is true, then 

| T[s, cos0(s)]| <exp{ - c o n s t k(s) sind(s)} (20) 

holds instead of the inequality (4). The maximum possi
ble lo(s) is const s112 Ins, because we know that5 

| ai(s) \<P(s) exp( -cons t l/s1'2), (21) 

where P(s) is a polynomial of s. Therefore, if the in
equality (20) is correct, the minimum of the scattering 
amplitude due to maximal partial-wave inelasticity is 
exp[—const s1/2 Ins sin0(s)[]. I t is interesting to note 
that this minimum is equal to that of Cerulus and Mar
tin, and of Kinoshita.6 Without the la? factor in the ex
ponent, this would be just the fit obtained by Orear.2 
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