S-WAVE HYPERON-NUCLEON INTERACTIONS AND SU;

channels are simultaneously open. An analogous prob-
lem for a different class of endothermic reactions was
analyzed successfully by Meshkov, Snow, and Yodh,’
who compared different endothermic reactions at the
same outgoing kinetic energy.

In the low-energy region, the rather large 2°— A mass
difference may cause large deviations from the pure SU;
predictions, for reactions (le) and (1f). For example, if
tensor forces are important® for an incident 351(Z—p)
state, the outgoing 3D, state of =% will be strongly sup-
pressed by centrifugal barrier effects relative to the
outgoing 3D; state of An.®

A particularly interesting comparison may be made
between the cross sections for the processes #+p— n+p
and Zt+4p — Z+4-p. Their 1S, cross sections both de-
pend only on T'9; and should be the same. However, the
551 cross section for the =tp system depends on 7'y,
whereas the 35, system for the n4p system corresponds
to the deuteron (T'15). Since

T1ot(ZH2H) = (1/4)0°(Zt24)+ (3/4)0' (2P2F)  (10)

and
o (nn) =o' (Zt=t), (11)
SU; invariance predicts that
1ot (ZFZH)> (1/4)0" (nn) . (12)

7S. Meshkov, G. A. Snow, and G. B. Yodh, Phys. Rev. Letters
12, 87 (1964).

8D. E. Neville, Phys. Rev. 130, 327 (1963); J. J. deSwart and
C. K. Iddings, ibed. 130, 319 (1963).
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The amount by which gt (Zt=1) is larger than ¢%(nn)
is a direct measure of T'jo. A difficulty with this analysis
arises if we consider the hyperon-nucleon potential as
arising from meson exchange. The wide variation of the
masses of the eight pseudoscalar mesons would imply
substantial differences in the ranges of parts of the
hyperon-nucleon potential compared to those of the
nucleon-nucleon potential.? This might produce devia-
tions from the SU; prediction given above.

Despite all of the difficulties cited above, comparison
of the reactions (1) with Egs. (2)-(9) should prove use-
ful because it may provide important clues about the
effect of SU; symmetry breaking on baryon-baryon
dynamics. The S-wave cross sections for the reactions
Egs. (1a)-(1g) are all observable, since K~ mesons
stopping in a hydrogen bubble chamber provide an
excellent source of low-energy Z+, -, and A hyperons.
The interactions of these hyperons with protons can be
studied in the same pictures which record their
production.’

Note added in proof. Preliminary experimental results
of R. Burnstein ef al.'® yield o¢ot(2+,2+)=2004100 mb
at a =t average laboratory momentum of 160 MeV/c.
The assumption of SUj; invariance combined with p-p
scattering data predicts 0°(Z+,2+)=165 mb at this
momentum, indicating that ¢'(Z+,2+) is small.

9 A similar comment has been made by R. H. Dalitz, Proceedings
of the Athens Topical Conference, 1963 (unpublished).

10 R. Burnstein, T. B. Day, B. Kehoe, B. Sechi-Zorn, and G. A.
Snow, Bull. Am. Phys. Soc. 8, 515 (1963); and (to be published).
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It is shown that if the analytically continued partial-wave amplitude is assumed to have ! dependence

as(sl)= 12:70 Cot(s)lm(14-1)m

for 1 <l4(s) and finite #, the scattering amplitude is bounded by exp{ — const[7,(s) sinf(s) J} at high energies.
Here a4 (s,))[a—(s,}) ]is equal to a;(s) for even (odd) integer I, The most physical example of this dependence
is that in which a central area of the scatterer becomes maximally absorptive.

HE large angle p—p elastic-scattering cross section!
shows a strong dependence on both energy and
momentum transfer. Orear? has pointed out that this
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strong dependence can be fitted by a single exponential
in the transverse momentum. If this dependence holds
to arbitrarily high energies, the scattering amplitude
for a fixed angle must decrease for increasing energy as
exp (— const s1/%), where s is the square of the center-of-
mass energy. At any rate it appears that the scattering
amplitude for finite fixed angle is a rapidly decreasing
function of s.

The purpose of this note is to show that this rapid
decrease of the scattering amplitude at finite angles
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can be understood as a direct consequence of maximal
inelasticity of the partial waves whose angular momenta,
are smaller than a bound Zy(s) which increases with s.
We mean by maximal inelasticity that

ai(s)=[n:(s) exp2i8;(s)—17]/ (28)~1/2

as s — o because 1;(s) — 0. This is the physically most
meaningful interpretation of our result. However, the
same effect upon finite angle scattering will be obtained
if all a;(s) go to any allowable fixed limit for I<<ly(s).

More detailed treatment show that even when /,(s)
is relatively small it is impossible for a;(s) to go to this
limit in an / independent way. The diffraction behavior
of the full amplitude requires deviation from a;(s)=17/2
which cannot be a too rapidly decreasing function of s.
We shall take this / dependence into account by expand-
ing a;(s) into a power series of /. Since a;(s) is given only
for positive integer values of /, we must discuss how to
continue ¢;(s) into the full complex plane in order to
expand it into a power series. One method is the one
used in connection with the Regge formalism. For our
purpose, however, we continue a;(s) into the complex
plane by using the definition

ay(s])= / d(cos®)[T(s, cosh)
’ +T(s, —cos) ] Pi(cosh). (1)

According to this definition a..(s,l) equals a;(s) for even !
and a_(s,l) equals a;(s) for odd I. Our reason for defining
a;(s) in complex / in this way is that a.(s,/) defined by
Eq. (1) has no singularity except at!= . Consequently,
for the approximation with finite powers of /, the defini-
tion (1) is better than any other definition on which
ai(s) might have some singularities at finite /. Because
of the symmetry of P;(cosf) about I=—%, a.(s,}) has
only even power of (2/4-1). Therefore we have

n

ay(s,)~ 2 CoE(s)Im(+1)™

m=0

when [<l(s), (2)

where, since lo(s) will be assumed to increase with s,
C.t(s) for m>£0 must go to zero as a function of s
sufficiently rapidly to guarantee convergence of the sum.

Our results are the following: If a.(s,}) is given by
Eq. (2) for finite »# and the difference between the two
sides of Eq. (2) is a sufficiently rapidly decreasing
function of s, then the scattering amplitude 7'(s, cosf)
for a finite angle is bounded by

| T (s, cosh) | <exp{— const[o(s) ]/?}. 3)

The inequality (3) can be extended to small angles
depending upon s, as

| T[s, cosf(s) ]| <exp{— const[lo(s) sinf(s)]/?}. (4)

The impact parameter corresponding to I=1Io(s) is
lo(s)/s'2. When ly(s) increases more slowly than s'/2%
the scattering in the partial waves is therefore due to a
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decreasing area of the scatterer. Our result is then: that
if the particles are homogeneous over such a small range
of impact parameters, T'(s, cosf) must decrease rapidly
as a function of s. In this note we shall only discuss the
inequality (4), since the inequality (3) is a special case
of this inequality. In (4) [Jo(s) sinf(s)]/? might, by
improved arguments, be replaced by /(s) sinf(s), as
we shall discuss later.

In order to prove (4), we use the results of a previous
paper.? In Paper I we have divided 7T[s, cosf(s)] into
upper and lower sums:

Tuls, cosf(s)]

- g(ZH—l)azu)[l—- Fu(s) TP Lcosb(s)] (5)

and
T.[s, cosf(s)]= g,(Zl-l—l)al(s) Fu(s)PLcosb(s)] (6)

using the “step function”

fi(s)={1—exp[—a In2s/(I+1) sind(s) }# s (7)

and have proved that: if T'(s, cosf) is analytic in a
particular region as a function of cosf and T'(s, cosf) is
bounded by a power of s at the boundary of the analy-
ticity region, then, if we take « sufficiently large,

ITU[S7 COSH(S)]| <S—N1 (8)

where N is an arbitrary positive number. It should be
noted that, by Eq. (7)

[1—fi(s)| <s™¥ for I<(N/a)lns/sinb(s)  (9)

and
[ fi(s)| <s™¥ for I>aqlnZs/sind(s), (10)

where ao=—qa/In[1—exp(—N/B)]. The analyticity
assumed in I to prove the inequality (8) is that T'(s, cosf)
is analytic as a function of cosf in an s independent
complex neighborhood of the real segment (—1, 1)
except for its intersection with the cuts from « to
x(s) and —x(s) to — 0, x(s) being an arbitrary function
of s with x(s)>1.

Although it was not remarked in I, the results there
are independent of the interpretation of s as the square
of the center-of-mass energy provided that s is larger
than the center-of-mass energy. If we replace the factor
ag In%s/sin(s) in Egs. (), (6), and (7) by ly(s) and call
the new step function F;(s), then the result corresponding
to the inequality (8) becomes

| Tu[s, cos(s)]| <exp—No[lo(s) sinf(s)Jv/2 (11)

with No=N/ag/2 The inequalities corresponding to (9)
and (10) are
[1—F(s)| <exp{—DNo[lo(s) sinf(s) T2}  (12)

3 K. Yamamoto, Phys. Rev. 134, B682 (1964), hereafter referred
to as I.
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for
1< (No/a)[lo(s)/sinf(s) ]\
and
| Fi(s) | <exp—No[lo(s) sinf(s) ]2 (13)
for

l>l0($) .

For the proof of the main inequality (4), it is necessary
to obtain a bound for T'z[s, cosf(s)] corresponding to
that in the inequality (11) for T'y[s, cosf(s)]. If a,(s,))
converges sufficiently rapidly to the form given by
Eq. (2) for I<lo(s), from the inequality (13) it is
obvious that the difference between T'z[s, cosf(s) ] and

T1s, cosf(s)]= i {Ct(5)tms, cos(s)]
F+Co(8)tn[s, cosb(s)]} (14)

is of the order of exp{—const[ly(s) sinf(s) ]2}, where
tmt[s, cosb(s)]

= 5 (4141) D)™ (241 Fa(5) PaLcos0()] (15)
and -
T, c0s0(s)]= 3 (4143) (2U+1)"(2U-+2)"Fary(s)
- X Pasa[cosd()]. (16)

In the right-hand side of Eq. (14) we discuss only
tot[s, cosf(s)], since the same discussion holds for
tmts, cosf(s)] with m>0 and for ¢, [s, cosf(s)]. To
estimate ¢ [s, cosf(s)], we consider the following
relation:

5 (41+ 1Py (cost) = [ (1— 24 cosf-+i)-2"

1=0
+ (1424 cosf+r2)32](1—H2) /2, (17)

which can be proved by using the generating func-
tion of the Legendre polynomials. If in Eq. (17)
h=1—exp{—const[lo(s) sinf(s)]/?}, then the right-
hand side of Eq. (17) satisfies all the analyticity and
bounded properties assumed for the amplitude dis-
cussed in I. Therefore, as was shown there, we have the
upper sum in Eq. (17)

| é(d‘lﬂ)h”[l—F 21(s)1Pa[cosf(s)]|

<exp{—const[/o(s) sinf(s) J?}. (18)
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Because of the form assumed for % the total sum
on the right-hand side of Eq. (17) is of the order of
exp{ —const[/(s) sinf(s) ]2}, then the lower sum

S (41 1) F 31 (s) Pl cos8(s) ]|

<exp{—const[/o(s) sinf(s) J"2}. (19)

This discussion is sufficient to prove the inequality
(4) because the difference between

tets, cosf(s)] and i (U1 F 21(s) Poy cosB(s) ]
1=0

is again of the order of exp{—const[/,(s) sind(s)]/2}
and exactly the same discussion follows for

twts, cosf(s)].

Although an ansatz of the form in Eq. (2) is sufficient
to obtain our result, we can see that for /y(s) increasing
with s, Ct(s) must go to zero at least [;2™(s) to guaran-
tee the convergence of Eq. (2). This means that any
partial wave goes to the limit Cot(s) or Cy=(s). It seems
reasonable, in view of the increasing number of inelastic
channels opening at high energies, that C¢t(s) and/or
Co(s) goes to 7/2 as s — « corresponding to maximal
inelasticity of the partial wave scattering in the high-
energy limit.

It may be possible to replace In%s in the inequality
(10) by Ins.* If such an improvement is true, then

| T[s, cost(s)]| <exp{—const lo(s) sinf(s)} (20)

holds instead of the inequality (4). The maximum possi-
ble Iy(s) is const s'/2 Ins, because we know that?

|ai(s)| <P(s) exp(—const I/s'/?), (21)

where P(s) is a polynomial of s. Therefore, if the in-
equality (20) is correct, the minimum of the scattering
amplitude due to maximal partial-wave inelasticity is
exp[ —const s'/2 Ins sinf(s)]. It is interesting to note
that this minimum is equal to that of Cerulus and Mar-
tin, and of Kinoshita.® Without the Ins factor in the ex-
ponent, this would be just the fit obtained by Orear.?
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